Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine
نویسندگان
چکیده
Machine performance degradation assessment and remaining useful life (RUL) prediction are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability. They provide a potent tool for operators in decision-making by specifying the present machine state and estimating the remaining time. For this ultimate purpose, a threestage method for assessing the machine health degradation and forecasting the RUL is proposed. In the first stage, only the normal operating condition of machine is used to create identification model for recognizing the dynamic system behavior. Degradation index which is used for indicating the machine degradation is subsequently created based on the root mean square of residual errors. These errors are the difference between identification model and behavior of system. In the second stage, the Cox’s proportional hazard model is generated to estimate the survival function of the system. In the last stage, support vector machine, which is one of the remarkable machine learning techniques, in association with time-series techniques is utilized to forecast the RUL. The data of low methane compressor acquired from condition monitoring routine is used for validating the proposed method. The result shows that the proposed method could be used as a reliable tool to machine prognostics.
منابع مشابه
QSAR Prediction of Half-Life, Nondimentional Eeffective Degradation Rate Constant and Effective Péclet Number of Volatile Organic Compounds
In this work some quantitative structure activity relationship models were developed for prediction of three bioenvironmental parameters of 28 volatile organic compounds, which are used in assessing the behavior of pollutants in soil. These parameters are; half-life, non dimensional effective degradation rate constant and effective Péclet number in two type of soil. The most effective descripto...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملThe Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression
Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملOnline Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines
In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015